References

(1) Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; De Franceschi, S. A CMOS Silicon Spin Qubit. Nat Commun 2016, 7 (1), 13575. https://doi.org/10.1038/ncomms13575.

(2) Grover, L. K. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing; STOC ’96; Association for Computing Machinery: New York, NY, USA, 1996; pp 212–219. https://doi.org/10.1145/237814.237866.

(3) Mooney, G. J.; Hill, C. D.; Hollenberg, L. C. L. Entanglement in a 20-Qubit Superconducting Quantum Computer. Sci Rep 2019, 9 (1), 13465. https://doi.org/10.1038/s41598-019-49805-7.

(4) Chuang, I. L.; Gershenfeld, N.; Kubinec, M. Experimental Implementation of Fast Quantum Searching. Phys. Rev. Lett. 1998, 80 (15), 3408–3411. https://doi.org/10.1103/PhysRevLett.80.3408.

(5) Wasielewski, M. R.; Forbes, M. D. E.; Frank, N. L.; Kowalski, K.; Scholes, G. D.; Yuen-Zhou, J.; Baldo, M. A.; Freedman, D. E.; Goldsmith, R. H.; Goodson, T.; Kirk, M. L.; McCusker, J. K.; Ogilvie, J. P.; Shultz, D. A.; Stoll, S.; Whaley, K. B. Exploiting Chemistry and Molecular Systems for Quantum Information Science. Nat Rev Chem 2020, 4 (9), 490–504. https://doi.org/10.1038/s41570-020-0200-5.

(6) Wasielewski, M. R.; Forbes, M. D. E.; Frank, N. L.; Kowalski, K.; Scholes, G. D.; Yuen-Zhou, J.; Baldo, M. A.; Freedman, D. E.; Goldsmith, R. H.; Goodson, T.; Kirk, M. L.; McCusker, J. K.; Ogilvie, J. P.; Shultz, D. A.; Stoll, S.; Whaley, K. B. Exploiting Chemistry and Molecular Systems for Quantum Information Science. Nat Rev Chem 2020, 4 (9), 490–504. https://doi.org/10.1038/s41570-020-0200-5.

(7) Kanai, S.; Heremans, F. J.; Seo, H.; Wolfowicz, G.; Anderson, C. P.; Sullivan, S. E.; Onizhuk, M.; Galli, G.; Awschalom, D. D.; Ohno, H. Generalized Scaling of Spin Qubit Coherence in over 12,000 Host Materials. Proceedings of the National Academy of Sciences 2022, 119 (15), e2121808119. https://doi.org/10.1073/pnas.2121808119.

(8) Ballance, C. J.; Harty, T. P.; Linke, N. M.; Sepiol, M. A.; Lucas, D. M. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. Phys. Rev. Lett. 2016, 117 (6), 060504. https://doi.org/10.1103/PhysRevLett.117.060504.

(9) Chow, J. M.; Gambetta, J. M.; Magesan, E.; Srinivasan, S. J.; Cross, A. W.; Abraham, D. W.; Masluk, N. A.; Johnson, B. R.; Ryan, C. A.; Steffen, M. Implementing a Strand of a Scalable Fault-Tolerant Quantum Computing Fabric. Nat Commun 2014, 5 (1), 4015. https://doi.org/10.1038/ncomms5015.

(10) Moreno-Pineda, E.; Godfrin, C.; Balestro, F.; Wernsdorfer, W.; Ruben, M. Molecular Spin Qudits for Quantum Algorithms. Chem. Soc. Rev. 2018, 47 (2), 501–513. https://doi.org/10.1039/C5CS00933B.

(11) goingtoinfinity. Largest genuine Entanglement: Qubits in GHZ state. Mario Krenn. https://mariokrenn.wordpress.com/2021/01/29/reference-list-for-records-in-large-entanglement-generation-number-of-qubits-in-ghz-states/ (accessed 2022-12-06).

(12) Friis, N.; Marty, O.; Maier, C.; Hempel, C.; Holzäpfel, M.; Jurcevic, P.; Plenio, M. B.; Huber, M.; Roos, C.; Blatt, R.; Lanyon, B. Observation of Entangled States of a Fully Controlled 20-Qubit System. Phys. Rev. X 2018, 8 (2), 021012. https://doi.org/10.1103/PhysRevX.8.021012.

(13) Kues, M.; Reimer, C.; Roztocki, P.; Cortés, L. R.; Sciara, S.; Wetzel, B.; Zhang, Y.; Cino, A.; Chu, S. T.; Little, B. E.; Moss, D. J.; Caspani, L.; Azaña, J.; Morandotti, R. On-Chip Generation of High-Dimensional Entangled Quantum States and Their Coherent Control. Nature 2017, 546 (7660), 622–626. https://doi.org/10.1038/nature22986.

(14) Shor, P. W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Rev. 1999, 41 (2), 303–332. https://doi.org/10.1137/S0036144598347011.

(15) Fataftah, M. S.; Freedman, D. E. Progress towards Creating Optically Addressable Molecular Qubits. Chem. Commun. 2018, 54 (98), 13773–13781. https://doi.org/10.1039/C8CC07939K.

(16) Gibney, E. Quantum Computer Race Intensifies as Alternative Technology Gains Steam. Nature 2020, 587 (7834), 342–343. https://doi.org/10.1038/d41586-020-03237-w.

(17) Preskill, J. Quantum Computing 40 Years Later. arXiv June 25, 2021. https://doi.org/10.48550/arXiv.2106.10522.

(18) Preskill, J. Quantum Computing in the NISQ Era and Beyond. Quantum 2018, 2, 79. https://doi.org/10.22331/q-2018-08-06-79.

(19) Degen, C. L.; Reinhard, F.; Cappellaro, P. Quantum Sensing. Rev. Mod. Phys. 2017, 89 (3), 035002. https://doi.org/10.1103/RevModPhys.89.035002.

(20) Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J. C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F. G. S. L.; Buell, D. A.; Burkett, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Collins, R.; Courtney, W.; Dunsworth, A.; Farhi, E.; Foxen, B.; Fowler, A.; Gidney, C.; Giustina, M.; Graff, R.; Guerin, K.; Habegger, S.; Harrigan, M. P.; Hartmann, M. J.; Ho, A.; Hoffmann, M.; Huang, T.; Humble, T. S.; Isakov, S. V.; Jeffrey, E.; Jiang, Z.; Kafri, D.; Kechedzhi, K.; Kelly, J.; Klimov, P. V.; Knysh, S.; Korotkov, A.; Kostritsa, F.; Landhuis, D.; Lindmark, M.; Lucero, E.; Lyakh, D.; Mandrà, S.; McClean, J. R.; McEwen, M.; Megrant, A.; Mi, X.; Michielsen, K.; Mohseni, M.; Mutus, J.; Naaman, O.; Neeley, M.; Neill, C.; Niu, M. Y.; Ostby, E.; Petukhov, A.; Platt, J. C.; Quintana, C.; Rieffel, E. G.; Roushan, P.; Rubin, N. C.; Sank, D.; Satzinger, K. J.; Smelyanskiy, V.; Sung, K. J.; Trevithick, M. D.; Vainsencher, A.; Villalonga, B.; White, T.; Yao, Z. J.; Yeh, P.; Zalcman, A.; Neven, H.; Martinis, J. M. Quantum Supremacy Using a Programmable Superconducting Processor. Nature 2019, 574 (7779), 505–510. https://doi.org/10.1038/s41586-019-1666-5.

(21) Awschalom, D. D.; Hanson, R.; Wrachtrup, J.; Zhou, B. B. Quantum Technologies with Optically Interfaced Solid-State Spins. Nature Photon 2018, 12 (9), 516–527. https://doi.org/10.1038/s41566-018-0232-2.

(22) Deutsch, D.; Penrose, R. Quantum Theory, the Church–Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1985, 400 (1818), 97–117. https://doi.org/10.1098/rspa.1985.0070.

(23) Feynman, R. P. Simulating Physics with Computers. Int J Theor Phys 1982, 21 (6), 467–488. https://doi.org/10.1007/BF02650179.

(24) Yu, C.-J.; von Kugelgen, S.; Krzyaniak, M. D.; Ji, W.; Dichtel, W. R.; Wasielewski, M. R.; Freedman, D. E. Spin and Phonon Design in Modular Arrays of Molecular Qubits. Chem. Mater. 2020, 32 (23), 10200–10206. https://doi.org/10.1021/acs.chemmater.0c03718.

(25) Kelly, J.; Barends, R.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O’Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, J. M. State Preservation by Repetitive Error Detection in a Superconducting Quantum Circuit. Nature 2015, 519 (7541), 66–69. https://doi.org/10.1038/nature14270.

(26) Clarke, J.; Wilhelm, F. K. Superconducting Quantum Bits. Nature 2008, 453 (7198), 1031–1042. https://doi.org/10.1038/nature07128.

(27) Barends, R.; Kelly, J.; Megrant, A.; Veitia, A.; Sank, D.; Jeffrey, E.; White, T. C.; Mutus, J.; Fowler, A. G.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Neill, C.; O’Malley, P.; Roushan, P.; Vainsencher, A.; Wenner, J.; Korotkov, A. N.; Cleland, A. N.; Martinis, J. M. Superconducting Quantum Circuits at the Surface Code Threshold for Fault Tolerance. Nature 2014, 508 (7497), 500–503. https://doi.org/10.1038/nature13171.

(28) DiVincenzo, D. P.; IBM. The Physical Implementation of Quantum Computation. Fortschr. Phys. 2000, 48 (9–11), 771–783. https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.

(29) Outeiral, C.; Strahm, M.; Shi, J.; Morris, G. M.; Benjamin, S. C.; Deane, C. M. The Prospects of Quantum Computing in Computational Molecular Biology. WIREs Computational Molecular Science 2021, 11 (1), e1481. https://doi.org/10.1002/wcms.1481.

(30) Benhelm, J.; Kirchmair, G.; Roos, C. F.; Blatt, R. Towards Fault-Tolerant Quantum Computing with Trapped Ions. Nature Phys 2008, 4 (6), 463–466. https://doi.org/10.1038/nphys961.

(31) Quantum Computing: A Taxonomy, Systematic Review and Future Directions. https://doi.org/10.1002/spe.3039.